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The stability of a steadily propagating planar premixed flame has been the subject
of numerous studies since Darrieus and Landau showed that in their model flames
are unstable to perturbations of any wavelength. Moreover, the instability was shown
to persist even for very small wavelengths, i.e. there was no high-wavenumber cutoff
of the instability. In addition to the Darrieus–Landau instability, which results from
thermal expansion, analysis of the diffusional thermal model indicates that premixed
flames may exhibit cellular and pulsating instabilities as a consequence of preferential
diffusion. However, no previous theory captured all the instabilities including a high-
wavenumber cutoff for each. In Class, Matkowsky & Klimenko (2003) a unified
theory is proposed which, in appropriate limits and under appropriate assumptions,
recovers all the relevant previous theories. It also includes additional new terms,
not present in previous theories. In the present paper we consider the stability of a
uniformly propagating planar flame as a solution of the unified model. The results
are then compared to those based on the models of Darrieus–Landau, Sivashinsky
and Matalon–Matkowsky. In particular, it is shown that the unified model is the only
model to capture the Darrieus–Landau, cellular and pulsating instabilities including
a high-wavenumber cutoff for each.

1. Introduction
Darrieus (1938, 1945) and Landau (1944) independently proposed a model which

describes a premixed flame as a surface separating the burned and the unburned
mixtures. The fluid flow on either side of the flame surface was governed by the non-
reactive flow equations. In the Darrieus–Landau model the flame surface propagates
normal to itself at a constant speed, i.e. the adiabatic laminar flame speed. The
fluid variables on the two sides of the flame surface are related by jump conditions.
Specifically, the mass and momentum were assumed to be conserved.

A stability analysis of a uniformly propagating planar flame governed by the
Darrieus–Landau model showed that, in contrast to observations, the flame was
unconditionally unstable and the model lacks the large-wavenumber cutoff. Indeed,
the most unstable perturbations of a flame described by the Darrieus–Landau model
correspond to the shortest-wavelength corrugations, e.g. length scales smaller than the
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DL M MDKW E S CW MM CMK

postulated(p)/derived(d) p p p p d d d d
Flame speed relation
algebraic: stretch(χ )/ const c χ c, s – χ χ –

curvature(c)/strain(s)
ode/pde in time(t), space(x) – – – – t – – t, x
Jump conditions
Darrieus–Landau (DL) DL DL DL DL DL DL DL DL
surface compression (σ ) σ σ
Marangoni (∇⊥σ ) ∇⊥σ
Instabilities
Darrieus–Landau (DL) DL DL DL DL DL DL DL DL
cutoff for some(+)/ – + + + + + + ++

all(++) parameters
cellular instability (C) – – – – C C C C
cutoff for some(+)/ – – – – – + + ++

all(++) parameters
pulsating instability (P) – – – – P – – P
cutoff for some(+)/ – – – – – – – ++

all(++) parameters

Table 1. Summary of theories of DL, Darrieus (1938, 1945) and Landau (1944); M, Markstein
(1951); MDKW, Karlovitz et al. (1953); E, Eckhaus (1961) and Markstein (1964); S, Sivashinsky
(1976); CW, Clavin & Williams (1982); MM, Matalon & Matkowsky (1982); CMK, Class
et al. (2003).

thickness of the flame, which is clearly a limit not covered by the model. In addition,
the possibility of pulsating instabilities was not even considered. Since then there have
been a number of studies which have attempted to improve the Darrieus–Landau
model.

In table 1 the various theories are summarized with respect to the form of the
flame speed relation, the form of the jump conditions, the instabilities captured and
whether or not the high-wavenumber cutoff of the instabilities is exhibited for all or
for only some parameter values.

The early phenomenological theories of Markstein (1951), Karlovitz et al. (1953),
Eckhaus (1961) and Markstein (1964) assumed that there exists a length, the Markstein
length, which measures the smallest corrugations of the flame front. The ratio of this
length scale to the hydrodynamic length scale is called the Markstein number Mr.
The Darrieus–Landau flame speed relation (constant flame speed) was replaced by
an algebraic relation, with the flame proportional to either flame curvature, or a
combination of curvature and strain, or flame stretch. The jump conditions remained
unchanged from those of the Darrieus–Landau model. In order to understand the
mechanism of stabilization of short-wave perturbations for Mr > 0, consider, for
example, a perturbed planar flame in the Markstein model, where m =1 − Mr2c.
Here, m is the normal mass flux through the flame and c the mean curvature of the
flame. Now, assume that the flame is displaced into the burned (fresh) mixture, i.e. the
curvature of the flame is negative (positive). The flame thus has a reduced (enhanced)
flame speed so that it returns to its initial planar state. For large perturbation
wavelengths this effect is weak, so the Darrieus–Landau instability is observed.

The early models are phenomenological, as they ignore the flame structure.
Sivashinsky (1976) derived a flame speed relation for a Darrieus–Landau type model
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for general Lewis number Le. He used the method of matched asymptotic expansions,
where the flame zone is a thin inner region embedded within a constant-density outer
flow. The reaction zone is a yet thinner region within the flame structure. By solving
the inner equations, i.e. the flame structure equations, and matching them to the outer
flow, he recovered the Darrieus–Landau jump conditions and derived a flame speed
relation which is an ordinary differential equation in time. The Sivashinsky model
exhibits the Darrieus–Landau instability, the cellular instability and the pulsating
instability. The cellular and pulsating instabilities are also present in the diffusional
thermal theory of Barenblatt, Zeldovich & Istratov (1962) (see also Zeldovich et al.
1985). However, it lacks a high-wavenumber cutoff. The value Le =1 is a sharp
boundary between two completely different predicted qualitative behaviours. For all
Le < 1 the cellular instability is exhibited, while for all Le > 1 the pulsating instability
is exhibited. This is in contrast to diffusional thermal theory which predicts that there
is a band of values about Le =1 for which stability is observed. Specifically, the cellular
instability is only observed for Le below a critical value which is below Le =1, and
the pulsating instability is only observed for Le above a critical value which exceeds
Le =1. Due to stability considerations Sivashinsky considered his theory to be valid
for stationary flames only.

Matalon & Matkowsky (1982) and Clavin & Williams (1982) derived a model of
flames as gasdynamic discontinuities for near-equidiffusional flames, i.e. Le ≈ 1. They
employed the method of matched asymptotic expansions to derive a flame speed
relation which is algebraic, similar to the phenomenological relation proposed in
Markstein (1964). The flame speed relation of Clavin & Williams (1982) corresponds
to the assumption of infinitesimal perturbations of planar flames in nearly uniform
flows and is thus a linearization of that of Matalon & Matkowsky (1982) who
considered O(1) perturbations in general flow fields. The Matalon–Matkowsky model
also includes jump conditions for the flow field.

The stability analysis in Matalon & Matkowsky (1982) shows that for Lewis
numbers Le above a critical value Lec < 1, the flame is unstable to long-wave
perturbations while it is stable to short-wave perturbations. The oscillatory instability
is not captured in this model since Le is restricted to be too close to 1. For Le <Lec,
perturbations of any wavelength are unstable. This corresponds to the parameter
regime where the cellular instability is observed in the diffusional thermal theory.

In a companion paper (Class, Matkowsky & Klimenko 2003) we derive a unified
model which reduces to the previous models if appropriate limits are taken and
similar assumptions are made, e.g. ignoring the effects of short wavelengths. The
model also includes terms which are not present in earlier theories. The flame speed
relation in Class et al. (2003) includes the time derivative and the nonlinearity
of Sivashinsky (1976), the transverse diffusion terms implicitly contained in the
Kuramoto–Sivashinsky equation (Sivashinsky 1980) and the perturbative correction
terms for the flame speed relation and the jump conditions in Matalon & Matkowsky
(1982) and Clavin & Williams (1982). Thus, we expect to find that all the instabilities
described by previous theories are fully contained in the unified theory. Below
we will show that this is indeed the case. The unified theory also includes new
transverse diffusion terms. These terms will be shown to stabilize high-wavenumber
perturbations. They originate from transverse diffusion which stabilizes short-wave
perturbations, just as in diffusional thermal theory (Barenblatt et al. 1962).

In the present paper we analyse the stability of a uniformly propagating planar
flame which is governed by the unified model for premixed flames as gasdynamic
discontinuities in Class et al. (2003). We show that the unified model exhibits the
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Darrieus–Landau instability and both the cellular and pulsating instability of the
diffusional thermal theory. Moreover, we will show that the model exhibits the short-
wavenumber cutoff for all instabilities.

The structure of the paper is as follows. In § 2 we review the unified theory. In
§ 3 we analyse the stability of a uniformly propagating planar flame subject to small
perturbations for the Darrieus–Landau model, the Matalon–Matkowsky model, the
Sivashinsky model and the unified model and compare the results. Finally, in § 4 we
summarize our results.

2. Governing equations
The unified model for premixed flames as gasdynamic discontinuities which is

derived in Class et al. (2003) generalizes the original model of Darrieus and Landau
to take into account the flame structure.

The model consists of (a) conservation equations for mass and momentum in the
fresh and burned gas mixtures, (b) jump conditions for mass and momentum, and
(c) a flame speed relation describing the propagation of the discontinuity surface.

(a) In the model the non-reactive flow on either side of the flame is described by
the Navier–Stokes equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) = −∇p + ∇ · σ , (2.2)

where ρ = ρ̃/ρ̃f , v = ṽ/s̃0
F , p = p̃/(ρ̃f (s̃0

F )2) are the non-dimensional density, velocity,
and dynamic pressure. Tildes denote dimensional quantities and the index f denotes
reference values in the fresh mixture. The adiabatic flame speed s̃0

F , i.e. the speed
of a uniformly propagating planar adiabatic flame relative to the fresh mixture,
is the reference velocity. The independent variables are the time t = t̃ s̃0

F /l̃ and the
Cartesian spatial variables ηi = η̃i/l̃ (i = 1, 2, 3), where l̃ represents a characteristic
hydrodynamic length scale of the flow. The nabla operator is ∇ = (∂/∂η1, ∂/∂η2, ∂/∂η3)
and the operator ⊗ denotes the dyadic product.

The temperature T is assumed to be uniform in the fresh mixture (Tf = 1).
In the burned mixture small variations about the adiabatic temperature Tb are
observed, resulting in small density variations. However, in Class et al. (2003), it
was shown that these variations are negligible to the order of accuracy considered
in the model. Therefore, density is also constant in the burned mixture. Thus, we
take the density ρ = ρf = 1 in the fresh mixture and ρ = ρb = 1/Tb in the burned
mixture.

The stress tensor is σ = Pr Pe−1λ(∇v + ∇vT − 2
3
I∇ · v) where the superscript T denotes

the transpose and I the identity matrix. The Péclet number Pe= l̃/l̃0 is the ratio of the
hydrodynamic length scale l̃ to the flame thickness l̃0 = λ̃f /(ρ̃f c̃pf s̃0

F ), where λ̃f and
c̃pf are the thermal conductivity and specific heat of the fresh mixture, respectively.
The Prandtl number Pr is the ratio of the kinematic viscosity ν̃f to the thermal
diffusivity κ̃ = λ̃/(ρ̃f c̃pf ). The non-dimensional thermal conductivity λ= λ̃/λ̃f is unity

in the fresh mixture and, from kinetic gas theory, it follows that λ∼ T
1/2
b in the burned

mixture.
(b) The fluid fields on the two sides of the flame surface are related by the

jump conditions for the normal mass flux, normal momentum flux, and tangential
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momentum flux, respectively:

[m] = 0, (2.3)

[mvn + p − σnn] = − 1

Pe
2cmIσ + o(Pe−1), (2.4)

[mv⊥ − σ n⊥] = − 1

Pe
∇⊥(mIσ ) + o(Pe−1). (2.5)

The normal mass flux across the flame surface is m = ρ(vn − un), where vn = v · n is
the normal velocity component with respect to the flame surface, and un is the normal
propagation speed of the flame surface relative to a fixed frame of reference. The
normal vector on the flame surface pointing into the burned product is denoted by
n. The tangential velocity vector on the flame surface is v⊥ = n × v × n, and similarly
the tangential derivative is ∇⊥( ) = n × ∇( ) × n. The normal and tangential stresses
σnn and σn⊥ at the discontinuity surface are σnn = n · σ · n and σn⊥ = n × (σ · n) × n,
respectively. The jump condition (2.3) states that normal mass flux is continuous
across the flame. According to the jump condition (2.4) normal momentum exhibits
an O(Pe−1) jump which is proportional to the curvature c = −(1/2)∇ · n of the flame
surface. The term −Pe−1mIσ plays a role similar to surface tension but is here referred
to as surface compression since it has the opposite sign. Gradients of surface
compression result in a jump of tangential momentum (2.5), which is the analogue
of Marangoni forces. The quantity Iσ > 0, in the reaction sheet approximation, is
given by

Iσ = 4
3
(Pr + 1)

(
T

3/2
b − 1

)
− 2(Tb − 1), (2.6)

and thus grows with thermal expansion.
(c) The propagation of the flame normal to itself is associated with the normal

mass flux m through the flame, which is governed by the nonlinear partial differential
equation

C(IH (∂/∂t + χ)(1/m) − Pe−1I�∇2
⊥(1/m) + Pe−1I∇2m(∇⊥(1/m))2)

+ m ln(m + Pe−1((IY − IX)χ/m + 2cIX)) = 0, (2.7)

which we refer to as the unified flame speed relation.
Here, C = Pe−1Ze(1−Le−1), where Ze is the Zeldovich number, is a non-dimensional

number which measures the combined effect of preferential diffusion and the
temperature sensitivity of the flame speed. The flame stretch χ is the relative temporal
change in surface area of a flame surface element, where points on the surface move
with the local tangential flow speed. Note that the tangential speed is to leading
order continuous across the flame, and thus χ may be calculated using either the
unburned or the burned flow field. The positive constants IH , I�, I∇2 , IY , and IX are
given by

IH =
1

1 − Le−1

∫ 1

0

((Tb − 1)Θ + 1)−1/2(1 − ΘLe−1) dΘ, (2.8)

I� = 1 + Le−1 +
Le(3 + Le)

4(1 + Le)2
(Tb − 1), (2.9)

I∇2 =
7 + Le(4 + Le)

8(1 + Le)3
Le(Tb − 1), (2.10)
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IY =

∫ 1

0

((Tb − 1)Θ + 1)−1/2ΘLe−1 dΘ + 2
(
T

1/2
b − 1

)
, (2.11)

IX =
2Tb

T
1/2
b + 1

. (2.12)

The time derivative indicates that the mass flux m needs a definite amount of
time to adjust to new conditions. The operator ∇2

⊥(. . .) = ∇ · (n × ∇(. . .) × n) is the
surface Laplacian. Thus, neighbouring points on the flame cannot propagate at
uncorrelated speeds. A second mechanism coupling neighbouring flame elements
is provided by the nonlinear term (∇⊥(1/m))2 = (∇⊥(1/m)) · (∇⊥(1/m)), where the
operator ∇⊥(. . .) = (n × ∇(. . .) × n) is the surface gradient.

If we ignore the effect of short-wavelength variations, i.e. the terms ∇2
⊥(1/m) and

(∇⊥(1/m))2, the unified flame speed relation reduces to the flame speed relations
previously derived by Sivashinsky (1976) and Matalon & Matkowsky (1982) in the
appropriate limits, a fact that is extensively discussed in Class et al. (2003).

3. Stability of steadily propagating planar flames
The time-dependent version of the flame speed relation derived in Sivashinsky

(1976) for Lewis numbers bounded away from unity was rejected by him due
to stability considerations. In particular, the pulsating instability sets in for any
Lewis number which exceeds unity. However, from the stability analysis of near-
equidiffusional flames in Pelce & Clavin (1982) and Matalon & Matkowsky (1982) it
is known that for Lewis numbers which exceed unity by only O(1/Pe) the pulsating
instability does not appear. The general flame speed relation (2.7) bridges the results
for Lewis numbers close to and bounded away from unity, so that we expect to find
that the pulsating instability sets in if the Lewis number exceeds a critical value Lec

slightly greater than unity. Furthermore, our inclusion of short-wave perturbation
effects yields a term which, as we will see, is effective in cutting off the high-
wavenumber instability. Specifically, we will show that planar flames are stable with
respect to high-wavenumber (short-wavelength) perturbations for all parameters. In
addition, in agreement with the results of diffusional–thermal theory, we will show
that the uniformly propagating planar flame exhibits no instability other than the
long-wave Darrieus–Landau instability in a band of Lewis numbers about Le=1.

Consider a uniformly propagating planar flame. In the moving Cartesian coordinate
system (y1, y2, y3) attached to the flame, the flame surface appears to be at rest at
y1 = 0. In the fresh mixture we have unity density ρ and conductivity λ while in the
burned mixture the density ρ = ρb and conductivity λ= λb take constant values which
in general differ from the fresh values. The planar basic state is given by

m = v1
f = 1, v1

b =
1

ρb

, pb = 1 − 1

ρb

, vα
f = vα

b = pf = 0. (3.1)

Now consider perturbations of the basic state so that the perturbed flame is located
at y1 = εψ(y2, y3, t), where ε is a small parameter, much smaller than any other
parameter of the problem. As a consequence of the perturbation a perturbed flow is
induced ahead of and behind the flame:

m = 1 + εm′, v1
f = 1 + εv1′

f , v1
b =

1

ρb

+ εv1′
b , (3.2)

vα
f = εvα′

f , vα
b = εvα′

b , pf = εp′
f , pb = 1 − 1

ρb

+ εp′
b (3.3)
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where primes indicate perturbed quantities governed by the linearized fluid equations,
boundary and jump conditions and the flame speed relation. Though the perturbed
flame is slightly distorted from the origin y1 = 0, we apply the jump conditions at
y1 = 0, by using a Taylor series expansion of all quantities about y1 = 0. In the stability
analysis we treat all quantities other than ε as O(1).

We seek solutions of the linearized equations

∂vi′

∂yi
= 0, (3.4)

ρ
∂v1′

∂t
+

∂vj ′

∂yj
+

∂p′

∂y1
− Pr

Pe
λ

∂2v1′

(∂yj )2
= 0, (3.5)

ρ
∂vα′

∂t
+

∂p′

∂yα
− Pr

Pe
λ

∂2vα′

(∂yj )2
= 0, α = 2, 3, (3.6)

subject to homogeneous boundary conditions as y1 → ±∞ in the form

ψ = aψ exp(ik2y
2 + ik3y

3 + ωt), (3.7)

m′ = am exp(ik2y
2 + ik3y

3 + ωt), (3.8)

v1′ = a1(y1) exp(ik2y
2 + ik3y

3 + ωt), (3.9)

vα′ = aα(y1) exp(ik2y
2 + ik3y

3 + ωt), (3.10)

p′ = ap(y1) exp(ik2y
2 + ik3y

3 + ωt), (3.11)

where the terms a1(y1), aα(y1), and ap(y1) in the fresh and burned mixtures are

related by the linearized jump conditions. Here, k2 and k3, with k =
√

k2
2 + k2

3 , are the
wavenumbers in the y2- and y3-directions, respectively, and ω is the growth rate of
the perturbations. Instability of the planar solution corresponds to Reω > 0.

The solvability condition for the resulting system of equations yields the dispersion
relation for the eigenvalue ω = ω(k). The form of the dispersion relation depends on
the relative sizes of the parameters. Each of the cases is considered separately in the
sections that follow. Note that the effect of transverse diffusion, which stabilizes short
waves, appears only in § 3.4 where the unified model is discussed.

3.1. The Darrieus–Landau model

If C =0 and O(Pe−1) terms are neglected, the dispersion relation reduces to that of
Darrieus and Landau:

k2(ρb − 1) + 2kρbω + ρb(1 + ρb)ω
2 = 0. (3.12)

Figure 1 shows the stability diagram for the Darrieus–Landau instability, and plots
the growth rate versus the wavenumber k of the perturbation. There are two
real eigenvalues for any wavenumber k. For planar perturbations (k = 0) we have
ω =0. Otherwise, one eigenvalue ω is positive and the other is negative. Positive ω

corresponds to instability. We see that ω grows with increasing k, i.e. with decreasing
wavelength. Thus, a planar flame is unstable with respect to any perturbation, no
matter how short in wavelength it is. This result is in contradiction to experimental
observations. We expect a cutoff of short-wavelength wrinkles along the flame, and
indeed this will be shown to be the case in § 3.4. below.

3.2. The Matalon–Matkowsky model (C = O(Pe−1))

If C = O(Pe−1), i.e. PeC =O(1), retaining the first two terms in an asymptotic
expansion in powers of Pe−1 yields the Matalon & Matkowsky (1982) dispersion
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Figure 1. Growth rate ω versus wavenumber for the Darrieus–Landau model (Tb = 5).
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Figure 2. Stability diagram for the Matalon-Matkowsky model. Left: case (b), destabilizing
trend beyond the Darrieus–Landau instability (Le= 0.5, Ze=8, Pe= 100, Pr= 0.7, Tb =5).
Right: case (c), high-wavenumber cutoff of Darrieus–Landau instability and stable pulsating
solution. The frequency Im(ω) of the pulsations is proportional to the width of the shaded
region (Le= 0.62, Ze =8, Pe= 100, Pr = 0.7, Tb = 5).

relation:

k2(ρb − 1)+2kρbω +ρb(1+ρb)ω
2 − 2k2(PeCIH + IY − IX(1+ρb))(k +ρbω) = 0 (3.13)

Figure 2 shows the corresponding stability diagrams for near-equidiffusional flames;
the width of the shaded region corresponds to the frequency of the oscillating
solutions. As for the Darrieus–Landau instability, there are two real eigenvalues for
any wavenumber k. We present results for three cases.

(a) If PeCIH + IY − IX(1 + ρb) = 0, we recover the Darrieus–Landau result. This
case corresponds to Lewis numbers slightly below unity.

(b) If PeCIH + IY − IX(1 + ρb) > 0, the instability is enhanced, and we observe no
cutoff of high-wavenumber perturbations. This corresponds to Lewis numbers below
a critical Lewis number smaller than unity.

(c) If PeCIH + IY − IX(1 + ρb) < 0, the instability is inhibited, i.e. we observe a
stabilizing trend. The result represents a perturbative correction to the Darrieus–
Landau result. However, for large k the growth rate ω becomes negative and we
observe the cutoff of high-wavenumber perturbations. For yet larger k a stable
pulsating eigenvalue is found. The pulsating instability which results from the time
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Figure 3. Stability diagram for the Sivashinsky model. The frequency Im(ω) of the pulsations
is proportional to the width of the shaded regions. Left: case (b), destabilizing trend beyond the
Darrieus–Landau and pulsating instability for high wavenumbers (Le= 0.3, Ze= 8, Pe= 100,
Pr = 0.7, Tb = 5). Right: case (c), high-wavenumber cutoff of Darrieus–Landau instability and
pulsating instability for high wavenumbers (Le= 4, Ze= 8, Pe= 10, Pr = 0.7, Tb = 5).

derivative in the flame speed relation is not captured by the Matalon–Matkowsky
model.

3.3. The Sivashinsky model (C = O(1))

If C = O(1) and O(Pe−1) terms are neglected, we obtain the dispersion relation of
Sivashinsky (1976):

(1 − CIHω)(k2(ρb − 1) + 2kρbω + ρb(1 + ρb)ω
2) − 2k2CIH (k + ρbω) = 0. (3.14)

Figure 3 shows the corresponding stability diagrams. We present results for three
cases.

(a) If C = 0, i.e. if Le= 1, we recover the Darrieus–Landau dispersion relation.
(b) If C < 0, corresponding to Lewis numbers below unity, we observe a destabilizing

trend so that we obtain instability for any wavenumber. For long-wave perturbations
we obtain a positive real eigenvalue, corresponding to a cellular instability of the
flame. For large wavenumbers k we find a pair of complex-conjugate eigenvalues with
positive growth rate, corresponding to pulsating flames.

(c) C > 0 corresponds to Lewis numbers above unity. We observe a trend toward
stabilization of the Darrieus–Landau instability. For an O(1) wavenumber there is a
cutoff of the instability, i.e. ω becomes negative on the upper branch. For yet higher
wavenumbers, the curves for the two real eigenvalues emerging from the origin merge
to become a pair of complex-conjugate eigenvalues.

The growth rate ω for the complex eigenvalues increases with growing k, so that
beyond a critical wavenumber kcr the amplification rate is positive, with no high-
wavenumber cutoff. With growing wavenumbers k the frequency of the eigenvalue
grows rapidly. The solutions for high wavenumbers correspond to an unstable
pulsating flame, which oscillates at high frequency.

The behaviour for low wavenumbers is in agreement with physical observations,
i.e. there is a cutoff of the Darrieus–Landau instability. The behaviour for high
wavenumbers is non-physical, as we expect to find a cutoff of the pulsating instability
as well. Indeed, this is the case, as will be seen in § 3.4. below.

3.4. The unified model

Employing the unified flame speed relation (2.7), and the jump conditions (2.3)–(2.5),
and treating all the parameters as O(1) quantities yields the dispersion relation of the
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Figure 4. Stability diagram for the unified model for case (a), i.e. small Le. The figure on the
right is a blowup of the boxed region in the figure on the left. The figure exhibits the cutoff of
the pulsating instability for large wavenumbers (Le= 0.3, Ze= 8, Pe= 10, Pr =0.7, Tb = 5).
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Figure 5. Stability diagram for the unified model for case (b), i.e. intermediate Le. The
Darrieus–Landau instability and its cutoff is observed. The pulsating solution branch is stable
(Le=2, Ze= 8, Pe= 10, Pr= 0.7, Tb = 2.5).
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Figures 4–6 show the corresponding stability diagram for three cases.
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Figure 6. Stability diagram for the unified model for case (c), i.e. large Le. The figure on the
right is a blowup of the boxed region in the figure on the left. The figure exhibits the cutoff
of the Darrieus–Landau instability and of the pulsating instability (Le=4, Ze= 35, Pe= 100,
Pr = 0.7, Tb =9).

(a) If C <Ccr < 0, we find a destabilizing trend beyond the Darrieus–Landau
instability. Furthermore, the flame is unstable with respect to a second instability
for long-wave perturbations including planar perturbations. This branch merges
with the Darrieus–Landau branch and an unstable oscillatory branch emerges. For
high wavenumbers this branch becomes stable. For yet higher wavenumbers the
oscillatory branch, corresponding to a pair of complex-conjugate eigenvalues, becomes
real and splits into two stationary branches, which are both stable. The pulsating
instability disappears due to the presence of the transverse diffusion term, which
forces neighbouring flame elements to propagate at similar flame speeds and damps
pulsations. If the transverse diffusion term were not present, then the oscillatory
branch would remain unstable for high wavenumbers, with no cutoff, and the two
stationary high-wavenumber branches would not be present.

(b) If Ccr <C <Co where Co > 0, we find a stabilization of the Darrieus–Landau
instability. Furthermore, there is an additional real branch which is stable for any
wavenumber. There is a high-wavenumber cutoff of the Darrieus–Landau instability.
For yet higher wavenumbers the stable and unstable Darrieus–Landau instability
branches merge and a stable branch corresponding to a pair of complex conjugate
eigenvalues emerges. For yet higher wavenumbers the stable oscillatory branch splits
into two stationary branches which are both stable. If the transverse diffusion term
were omitted, then the oscillatory branch would approach a constant negative value
ω for k → ∞. The two stationary branches for high wavenumbers again would not
exist. In addition, Co would become smaller.

(c) If C > Co > 0, we find behaviour similar to the case Ccr <C <Co. However,
the growth rate of the oscillatory branch now becomes positive in a window of
wavenumbers k, i.e. an oscillatory instability is observed. If the transverse diffusion
term were omitted the cutoff of the high-wavenumber oscillatory branch would no
longer exist, i.e. short-wave perturbations with k → ∞ would be unstable, which is not
acceptable.

4. Conclusions
The unified model of premixed flames as gasdynamic discontinuities of Class et al.

(2003) contains elements found in all previous models, i.e. the dependence on flame
stretch and curvature suggested earlier in Markstein (1951), Karlovitz et al. (1953),
Eckhaus (1961) and Markstein (1964), the analogue of the transverse diffusion terms
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which in the diffusional thermal theory of Barenblatt et al. (1962) stabilize short-
wave perturbations, the time derivative and the nonlinearity derived by Sivashinsky
(1976), a nonlinear coupling of neighbouring flame elements similar to that in the
Kuramoto–Sivashinsky theory of Sivashinsky (1980), and a generalization of the fluid
flow jump conditions derived in Matalon & Matkowsky (1982).

In the present paper the stability of a uniformly propagating planar flame as a
solution of the unified model of flames as gasdynamic discontinuities was considered
and compared to stability results based on previous models of premixed flame
propagation which account for thermal expansion.

The Darrieus–Landau instability, due to thermal expansion, is captured by all
models which include thermal expansion, i.e. the models of Darrieus–Landau,
Sivashinsky, Matalon & Matkowsky and the unified model. The high-wavenumber
cutoff of the Darrieus–Landau instability is captured by the unified model for all
parameters, by the Sivashinsky model if Le > 1 and by the Matalon–Matkowsky
model if Le>Lec (Lec < 1).

The cellular instability due to preferential diffusion is captured by the models of
Sivashinsky, Matalon & Matkowsky, the diffusional thermal model and the unified
model. The high-wavenumber cutoff of the cellular instability is captured by the
diffusional thermal model and the unified model.

The pulsating instability due to preferential diffusion is captured by the Sivashinsky,
diffusional thermal and unified models. The high-wavenumber cutoff of the pulsating
instability is captured by the diffusional thermal and unified models.

The Sivashinsky model and the unified model capture all three instabilities.
However, only the unified model exhibits the cutoff of all instabilities. In contrast to
previous theories, for the unified model in Class et al. (2003) it is not necessary to
restrict the range of parameters in order to exhibit the high-wavenumber cutoff.

This research was supported by NSF grant DMS 00-72491 and DFG grant SFB
606.
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